

FEATURES

- Industrial Standard SIP-8 Package
- Ultra-wide 4 : 1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +90°C
- No Min. Load Requirement
- Overload and Short Circuit Protection
- Remote On/Off Control
- UL/cUL/IEC/EN 62368(60950-1) Safety Approval

PRODUCT OVERVIEW

The MINMAX MCWI02 series is a range of isolated 2W DC-DC converter modules featuring fully regulated output and ultra-wide 4:1 input voltage ranges. The product comes in a SIP-8 package with a very small footprint occupying only 2.0 cm² (0.32 square in.) on the PCB.

An excellent efficiency allows an operating temperature range up to 90°C at full load. Further features include remote On/Off control, short circuit and over load protection.

The very compact dimensions of these DC-DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current	Input Current		Max. capacitive Load	Efficiency (typ.)		
	(Range)	Ű	Max.	@Max. Load	@No Load		@Max. Load		
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%		
MCWI02-12S033	-	3.3	500	183	60	1000	75		
MCWI02-12S05		5	400	208		1000	80		
MCWI02-12S12		12	167	204		170	82		
MCWI02-12S15	12 (4.5 ~ 18)	15	134	204		110	82		
MCWI02-12D05	(4.5 ~ 16)	±5	±200	208		470#	80		
MCWI02-12D12		±12	±83	202			100#	82	
MCWI02-12D15		±15	±67	204		47#	82		
MCWI02-24S033		3.3	500	92	30	1000	75		
MCWI02-24S05		5	400	104		1000	80		
MCWI02-24S12	04	12	167	102		170	82		
MCWI02-24S15	24	15	134	102		110	82		
MCWI02-24D05	(9 ~ 36)	±5	±200	104		470#	80		
MCWI02-24D12		±12	±83	101				100#	82
MCWI02-24D15		±15	±67	102			47#	82	
MCWI02-48S033		3.3	500	46		1000	74		
MCWI02-48S05		5	400	52	20	1000	80		
MCWI02-48S12	40	12	167	51		170	82		
MCWI02-48S15	48	15	134	51		110	82		
MCWI02-48D05	(18 ~ 75)	±5	±200	52		470#	80		
MCWI02-48D12		±12	±83	51		100#	82		
MCWI02-48D15		±15	±67	51		47#	82		

For each output

MCWI02 SERIES

DC-DC CONVERTER 2W, SIP-Package

Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	_
nput Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	-
	12V Input Models	3	4	4.5	VDC
Start-Up Threshold Voltage	24V Input Models	4.5	6	9	
	48V Input Models	8.5	12	18	
	12V Input Models			4	
Inder Voltage Shutdown	24V Input Models			8	
	48V Input Models			16	
Short Circuit Input Power				1500	mW
nput Filter	All Models	Internal Capacitor			

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On Under 0.6 VDC or Open Circuit					
Converter Off	4.7 to 15 VDC				
Standby Input Current	Nominal Vin			3	mA

Output Specifications

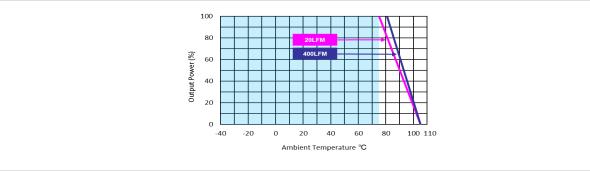
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.3	±0.5	%
Load Regulation	lo=0% to 100%		±0.5	±1.0	%
Minimum Load	No minimum Load Requirement				
Ripple & Noise	0-20MHz Bandwidth			100	mV _{P-P}
Transient Recovery Time	250/ Lood Stan Change		300	500	µsec
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	110	140		%
Dutput Short Circuit	Continuous, Automatic Recovery				

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit	
1/O lastation Valtage	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Second	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		250	500	pF	
Switching Frequency			300		kHz	
MTBF (Calculated)	MIL-HDBK-217F@25°C, Ground Benign	3,430,000			Hours	
Cofet: Announce	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-scheme)					
Safety Approvals	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)					

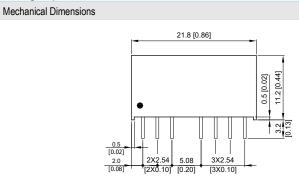
Environmental Specifications Parameter Min. Max. Unit Operating Ambient Temperature Range (See Power Derating Curve) °C -40 +90 °C Case Temperature ----+105 °C Storage Temperature Range +125 -55 Humidity (non condensing) ----95 % rel. H Lead Temperature (1.5mm from case for 10Sec.) 260 °C ----

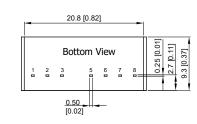
E-mail:sales@minmax.com.tw Tel:886-6-2923150


www.minmax.com.tw

MCWI02 SERIES

DC-DC CONVERTER 2W, SIP-Package


Power Derating Curve



Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 Specifications are subject to change without notice.

Package Specifications

	Pin Connections						
Pin		Single Output	Dual Output				
	1	-Vin	-Vin				
	2	+Vin	+Vin				
	3	Remote On/Off	Remote On/Off				
	5	NC	NC				
	6	+Vout	+Vout				
	7	-Vout	Common				
	8	NC	-Vout				

NC: No Connection

All dimensions in mm (inches)

- ► Tolerance: X.X±0.5 (X.XX±0.02)
- X.XX±0.25 (X.XXX±0.01)
- Pins ±0.1(±0.004)

Physical Characteristics


Case Size	: 21.8x9.3x11.2 mm (0.86x0.37x0.44 inches)
Case Material	: Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	: Alloy 42
Weight	: 4.66g

Test Setup

Peak-to-Peak Output Noise Measurement Test

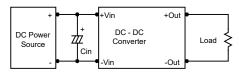
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Only one type of remote ON/OFF control is available for MCWI02. The module will turn on during the ON/OFF pin open or high impedance between ON/OFF pin and -Vin pin. The module will turn off if the ON/OFF pin is applied with a current of 2~4mA.

Maximum Capacitive Load


The MCWI02 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 4.7μ F for the 12V input devices and a 2.2μ F for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

