

1 产品简介

GM1K2-D270D24-FHS是一款直流高压输入,DC-DC隔离变换、全砖封装电源模块。宽范围200-400Vdc输入,额定24Vdc输出,额定输出功率1200W。

具备输入过欠压、输出过压、过流、 短路、过温保护以及均流并机等功能。

适用于快速响应功能模块、工业控制、数据通讯、网络通讯、服务器、工作站、分布式电源系统等供电场景。

200-400Vdc	24Vdc	50A	1200W	94%	全砖
输入电压	输出电压	输出电流	功率	效率	尺寸

关键特性

- 尺寸: 116.8mm×61mm×12.7mm
- 高效率:典型效率 94%
- MTBF大于1,000,000小时
- 铝基板散热
- 输出电压可调

保护特性

- 输入过欠压保护,自恢复
- 输出短路保护,自恢复
- 输出过流保护,自恢复
- 输出过压保护,自恢复
- 过温保护,自恢复
- 输出Oring

工作特性

- 输入电压范围: 200~400Vdc
- 输出电压: 24Vdc
- 输出电流: 50A
- 工作温度: -40°C~100°C
- 纹波典型值: ≤250mV
- 可均流并机

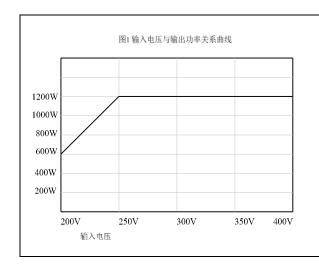
环保及安规特性

- 产品设计符合UL认证
- 产品设计符合RoHS
- 所有材料满足UL94V-0阻燃等级
- 产品设计符合UL/IEC/EN60950-1标准

可靠性测试

试验项目	试验条件
高温高湿试验	基板温度 100℃,湿度 95%;满载工作 24 小时。
温度冲击试验	基板高温 100℃,低温-40℃;高温 2 小时,低温 2 小时,温度变化率 5℃/min;满载;3 个循环。
高低温存储试验	低温-55℃,基板高温 100℃,各 24 小时。
高低温工作试验	低温-40℃,基板高温 100℃;满载,各 24 小时

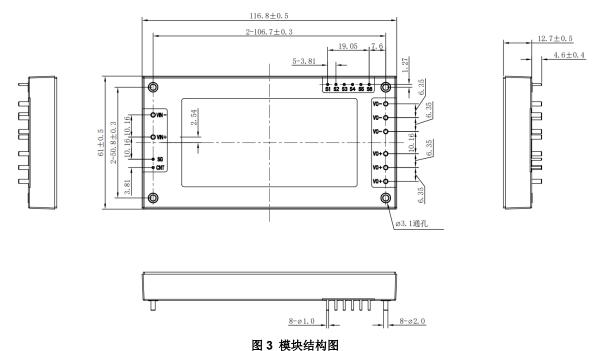
2 技术参数


测试条件: T=25℃, Vin=270Vdc, 典型负载, 自然风冷。


极限应力						
参数	数	最小值	典型值	最大值	单位	备注
输入电压	(连续)	170	_	415	Vdc	可以不工作,但不能损坏
工作》	温度	-40	_	100	°C	基板温度
存储法	温度	-55	_	100	°C	基板温度
			输入	入特性		
输入电压	玉范围	200	270	400	Vdc	直流
最大输入	入电流	_	_	8	A	输入最低工作电压 200Vdc, 输出负载在 43A 状态下
			输Ł	出特性		
输出电压	整定值	23.75	24	24.15	Vdc	
输出印	电流	0	_	50	A	
输出了	功率	_	_	1200	W	
源效	应	-1	_	+1	%	
负载	负载效应		_	+1	%	
峰峰值纹波电压		_	_	250	mV	见图 6 说明
容性负载	载大小	0	_	15000	uF	
温度	温度系数		_	+0.02	%/°C	-40°C~100°C
负载均	流度	-5	_	+5	%	20~100%负载范围内。不要 求模块混插均流
输出 0ri	ng 功能	ļ	具备该功能,	电源内置		
			效≥	率特性		
效率典	型值		94	_	%	额定输入 270V,80%负载输 出情况下测试。
			动和	态特性		
负载动态 响应	输出电压 下降		-700mV		V	输出负载在25%-50%-75%, 电流斜率0.1A/uS
开机	上升时间	_	20	_	ms	开机后,输出电压从整定值 的 10%爬升到 90%的时间。
特性	过冲电压	_	_	+10	%	
			保护	户特性		
输入欠压	保护点	165	_	180	Vdc	
保护	恢复点	180	_	195	Vdc	
输入过压	保护点	410	_	425	Vdc	

保护	恢复点	402	_	410	Vdc		
参	数	最小值	典型值	最大值	单位	备注	
输出短路保护			先恒流后	打嗝模式			
输出过	流保护	55	_	64	A		
输出过	玉保护	26	_	28	Vdc		
过温1	保护	100	_	110	°C	铝基板温度,可自恢复	
恢复	温度	_	_	94	°C	一	
	绝缘特性						
输入对输出	隔离电压	1500	_	_	Vdc	The Mil Bull of the let	
输入对铝基	扳隔离电压	1500	_	_	Vdc	耐压测试时间为 60 秒,绝缘不击穿或飞弧。	
输出对铝基	坂隔离电压	500	_	_	Vdc	WELLY WOME	
绝缘口	电阻	100	_	_	ΜΩ	500V 兆欧表	
其他特性							
MT	BF	_	1000	_	Kh		
环境特性							
工作	湿度	≤95%RH(温度 40±2℃)					
工作	环境	周围无严重尘土、爆炸危险介质、腐蚀金属和破坏绝缘的有害气体、 导电微粒和严重的霉菌,无强电磁干扰。					
海拔	高度	≤5000m					

3 功率特性曲线



4 结构尺寸图

尺寸: 116.8mm×61mm×12.7mm

输入 VIN+/VIN-与输出 VO+/VO-共 8 个针采用直径 2.0mm 插针, 其它小信号针采用直径 1.0mm 插针; 螺柱为 M3 内螺纹螺柱; 除已标注尺寸公差外,其它尺寸公差按 GB/T1804-2000 f 级标准执行; 模块安装高度为 $12.7_{-0.5}^{+0.5}$ mm,引脚伸出外壳长度 4.6 ± 0.2 mm。

5 引脚定义

管脚	信号名称	功能			
VIN+	VIN+	输入正端			
VIN-	VIN-	输入负端			
VO+	VO+	输出正端			
VO-	VO-	输出负端			
SG	ON/OFF+	遥控开关正端	短接 ON/OFF+和 ON/OFF-模块开机;		
CNT	ON/OFF-	遥控开关负端 断开 ON/OFF+和 ON/OFF-模块关			
S1	SVCC	辅助电源输出(12±1.5V/20mA_max); S-为参考地			
S2	IOG	输出电压正常时,输出电压高于 11V,信号拉低为低电平,使用时 需外接上拉电阻到 SVCC; 输出电压不正常时,输出电压低于 11V,信号拉高为高电平			
S3	PC	模块均流接口			
S4	TRIM	输出调压口;请参考图 4 TRIM 调压接线图			
S5	S+	远端补偿正			
S6	S-	远端补偿负			

6 特性描述

输出电压调节 (TRIM 端子)

模块通过外接电阻,可使输出电压在 25V~31V 内可调。当输出电压超出可调范围而更高时,可能会引起输出过压保护。输出电压上调时,需降低输出电流,以保证模块最大输出功率保持在规定范围内。输出电压下调时,最大输出电流不变。

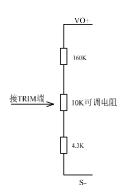


图 4 TRIM 调压接线图

远端补偿功能(+S端子)

该模块电源带有远端补偿功能,可以补偿电源模块输出端布线的压降(补偿能力一般为模块额定输出电压的5%,实际可补偿量由测试报告提供),提高负载点的电压精度。由于远端补偿采样线中的电流很小,因此不需粗的走线,但走线时应当尽量将远端补偿线尽量靠近输出地线或者地平面,以提高抗干扰能力。

如果应用中不需使用远端补偿功能,则需将S+和VO+在靠近模块的位置分别连接起来。

当电源模块输出外加有一级或一级以上的LC滤波电路时,如果需要使用远端补偿功能,则推 荐将远端补偿取样点放在LC滤波器与电源模块输出引脚间;否则容易引起电源系统工作不稳定。

模块均流信号(PC端子)

模块具有并联使用功能,将各电源模块的 PC 端子短接,可实现模块间的输出电流均流。PC 信号电流很小易受干扰,布线时 PC 信号线要求远离干扰源,布线尽量靠近地线。如果不需要并机功能,此脚空着,接线如下图 5 所示。

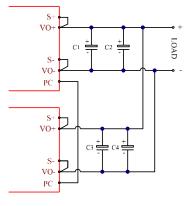


图 5 并机使用连接图

单模块外围电路推荐设计:

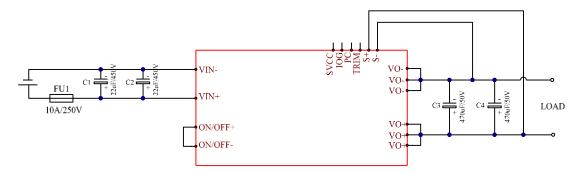
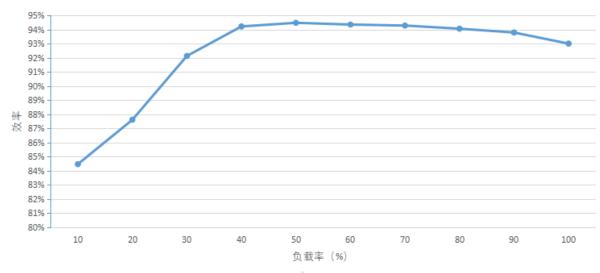
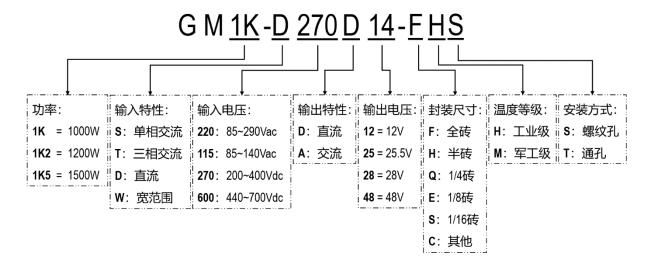


图 6 单机模块外围电路接线图


各参数配置如下:

元器件位号	推荐参数
Fuse	250V/10A
C1,C2	450V/22uF
C3,C4	50V/470uF

说明:输入输出电容除关注容量外,需要注意纹波电流的选取,以满足温升和降额的设计目标。如果使用在低温-20度以下时,请考虑输入/输出电容的温度特性,选取合适电容,以保障机器正常可靠运行。测量输出纹波时,在 C3、C4 电容后面并联一个 10uF 电解电容和一个 0.1uF 陶瓷电容两端测量。


效率曲线:

7 命名规则

8 装配要求

- 1、模块的铝基板应该安装在散热器上,安装方向可以自由选择,为防止电源模块周围的热积聚,在使用时需要充分考虑空气的对流。强制冷却或自然冷却时,需要考虑周围元器件的布局已及 PCB 的安装方向,以确保散热器的空气对流。为减小热阻,在安装前需在铝基板或被安装面上涂上一层较均匀薄薄的导热硅脂(散热膏)或导热凝胶,以满足散热要求;
 - 2、所有插针插入 PCB 后, 需保证插针出脚长在 0.8mm 以上。
- 3、M3 内螺纹柱选用匹配的 M3×0.5mm 螺钉来附锁,螺钉拧入螺柱长度至少需 3mm,扭力推 9±1kgf.cm;

9 模块焊接要求

该模块适用于标准的波峰焊接技术及手工焊接方式。

- 1、当波峰焊接时,模块的引脚必须在130℃预热20秒~30秒,波峰焊在260℃少于10秒。
- 2、手工焊接时,直径 1mm 的小信号针要注意烙铁设置温度 350 ℃左右,焊接时间不能过长,长时间的高温焊接能导致模块内部的针脚脱焊或者短路。

10 使用注意事项:

- 1) 电源使用时应避免撞击,以免所用模块破碎损坏;
- 2) 电源安装时,应锁紧电源的螺丝,以保证电源的接地良好。
- 3) 产品内部存在危险电压,不是专业人员不建议带电安装以及拆卸,以及带电触摸电源内部器件;
- 4) 由于模块外围所接的电容等元器件在低温下参数可能变差,可使用低温特性好的器件或适当进行预热,以提高输出指标的精度。
- 5) 模块铝基板温度超过80℃时,用户要严格按图2功率降额曲线配置负载(为提供瞬态输出能力, 电源内部输出功率没有强制限制),以免模块内部元件温升过高而损坏,不可恢复。
- 6) 关机后电源 VIN+与 VIN-的外接电容上可能还残留高压,拆卸及碰触前请放电。

- 7 -